At I/O 2017, Sundar Pichai noted that computers are getting better at understanding voice input, with Google having achieved “significant breakthroughs” in speech recognition. In fact, Google’s machine learning systems are now nearly on par with humans.

According to Mary Meeker’s annual Internet Trends Report, Google’s machine learning-backed voice recognition — as of May 2017 — has achieved a 95% word accuracy rate for the English language. That current rate also happens to be the threshold for human accuracy.

Quantifying Google’s progress, accuracy has improved nearly 20% since 2013. There are some caveats, including how the word error rate is calculated using real world search data that is more error prone than typical human dialogue.

This achievement is quite remarkable and lines up with Pichai noting that “error rates continue to improve even in noisy environments.”

Google’s efforts in AI are aiding in these improvements. For example, a deep learning technique known as neural beamforming allowed the company to release Google Home with only two microphones, but achieving the same quality as having eight.

It is also responsible for recent features like multi-user support that can recognize up to six different users and provide personalized Assistant results.

FTC: We use income earning auto affiliate links. More.

Check out 9to5Google on YouTube for more news:

You’re reading 9to5Google — experts who break news about Google and its surrounding ecosystem, day after day. Be sure to check out our homepage for all the latest news, and follow 9to5Google on Twitter, Facebook, and LinkedIn to stay in the loop. Don’t know where to start? Check out our exclusive stories, reviews, how-tos, and subscribe to our YouTube channel

About the Author

Abner Li

Editor-in-chief. Interested in the minutiae of Google and Alphabet. Tips/talk: abner@9to5g.com